scikit-learn: Theory of K-Means Clustering

In this course, we will explore a class of unsupervised machine learning models: clustering algorithms. Clustering algorithms seek to automatically learn, from the properties of the data, an optimal partitioning of the points into a discrete labeling of groups.

k-Means clustering is presented first as an algorithm and then as an approach to minimizing a particular objective function. One challenge with clustering algorithms is that it’s not obvious how to measure success.

Join for $9.99
scikit-learn: Theory of K-Means Clustering

Duration (mins)

Learners

NA / 5

Rating

Task List


We will cover the following tasks in 52 minutes:


Introduction

In this chapter, let’s go over the course objectives and get a feel of the course material we will encounter later. We get to look at a few motivating examples of k-means clustering, and then build our own implementation.


Setting

In this chapter, we start out by cultivating our intuition for the settings most appropriate for k-Means clustering. Next, we generate a two-dimensional dataset containing four distinct blobs. To emphasize that this is an unsupervised algorithm, we will leave the labels out of the visualization.


k-Means: By Example

Now that we have intuitive understanding of k-means, we will implement a clustering on our dataset from Chapter 2 using sklearn.cluster.KMeans. Lastly, we use our intuition to build a mathematically sound construction of k-means objective function.


Plotting the Results

Let’s visualize the results by plotting the data colored according to labels. We will also plot the cluster centers as determined by the k-means estimator:


Algorithm: Expectation-Maximization

In this chapter, we break down the work-horse behind k-means: the EM algorithm. Once we understand the fundamentals thoroughly, we implement the EM algorithm from scratch and visualize our results!


Failure Cases: Suboptimal Local Minimum

Here we look at situations where k-means fails in practice, and try to piece together why this is so.

First, although the E–M procedure is guaranteed to improve the result in each step, there is no assurance that it will lead to the global best solution. For example, if we use a different random seed in our simple procedure, the particular starting guesses lead to poor results.


Failure Cases: Number of Clusters

Another common challenge with k-means is that you must tell it how many clusters you expect: it cannot learn the number of clusters from the data. For example, if we ask the algorithm to identify six clusters, it will happily proceed and find the best six clusters.

Watch Preview

Preview the instructions that you will follow along in a hands-on session in your browser.

Snehan Kekre

About the Host (Snehan Kekre)


Snehan hosts Machine Learning and Data Sciences projects at Rhyme. He is in his senior year of university at the Minerva Schools at KGI, studying Computer Science and Artificial Intelligence. When not applying computational and quantitative methods to identify the structures shaping the world around him, he can sometimes be seen trekking in the mountains of Nepal.



Frequently Asked Questions


In Rhyme, all projects are completely hands-on. You don't just passively watch someone else. You use the software directly while following the host's (Snehan Kekre) instructions. Using the software is the only way to achieve mastery. With the "Live Guide" option, you can ask for help and get immediate response.
Nothing! Just join through your web browser. Your host (Snehan Kekre) has already installed all required software and configured all data.
You can go to https://rhyme.com/for-companies, sign up for free, and follow this visual guide How to use Rhyme to create your own projects. If you have custom needs or company-specific environment, please email us at help@rhyme.com
Absolutely. We offer Rhyme for workgroups as well larger departments and companies. Universities, academies, and bootcamps can also buy Rhyme for their settings. You can select projects and trainings that are mission critical for you and, as well, author your own that reflect your own needs and tech environments. Please email us at help@rhyme.com
Rhyme's visual instructions are somewhat helpful for reading impairments. The Rhyme interface has features like resolution and zoom that are slightly helpful for visual impairment. And, we are currently developing a close-caption functionality to help with hearing impairment. Most of the accessibility options of the cloud desktop's operating system or the specific application can also be used in Rhyme. However, we still have a lot of work to do. If you have suggestions for accessibility, please email us at accessibility@rhyme.com
We started with windows and linux cloud desktops because they have the most flexibility in teaching any software (desktop or web). However, web applications like Salesforce can run directly through a virtual browser. And, others like Jupyter and RStudio can run on containers and be accessed by virtual browsers. We are currently working on such features where such web applications won't need to run through cloud desktops. But, the rest of the Rhyme learning, authoring, and monitoring interfaces will remain the same.
Please email us at help@rhyme.com and we'll respond to you within one business day.

Ready to join this 52 minutes session?

More Projects by Snehan Kekre